

Metagenomic NGS A new promising diagnostic tool?

Valérie CARO Institut Pasteur Paris Pôle de Génotypage des Pathogènes Cellule d'Intervention Biologique d'Urgence Unité Environnement et Risques Infectieux

valerie.caro@pasteur.fr

V.Caro 2ª journée CNR – LNR 17 novembre 2017

A promising single universal pathogen detection method for infectious diseases diagnostics?

- Challenge of accurate diagnosis due to a wide variety of pathogens, causing clinically similar diseases
- · Current laboratory methods requiring a battery of tests
- Syndromic multiplex PCR, 16S rDNA sequencing, MALDI-TOF MS
- Slow turnaround (from several days to weeks)
- Etiology still unknown in up to 60% of infectious diseases cases
- Accurate information regarding pathogen identification leads to favorable clinical outcomes

Unbiased metagenomic NGS offer hypothesis-free, cultureindependent, pathogen detection directly from clinical specimens

A brief story of sequencing

1977 1990 1995 1999 2000 2006 2012 2013 2017

Sequencings per service in the freezening secretarial secretari

Timeline and workflow in diagnostic medical microbiology laboratories

Different applications of NGS analysis WGS of pure organism mNGS İ 보보보고

Interpretations of mNGS analysis

- · Host nucleic acid amplification
 - Human genome 1000x larger than bacterial genomes
 - 99% host reads
 - <1% used reads to make successful diagnoses
 - Host nucleic acid depletion or pathogen reads enrichment
 - Sequencing depth (more reads = higher sensitivity and higher cost)
- · Colonization vs Infection
 - Normal microbiota, transient colonizers, sample contamination,
 - · Initial mNGS focused on « normally » sterile specimens
 - Quantify pathogens reads as a percentage of total number of sequence reads
 - Procedures to distinguish true pathogens from colonizers to be develop for mNGS

Interpretations of mNGS analysis

- handling, containers DNA/RNA free, specimen collection
- « kit-ome » ubiquitous DNA in commonly used reagents
- No template control should be included (reads filter)
- Reads localization: spanning the genome vs restricted area

Methods

- No standardized protocol
- DNA approach indicates the presence of organisms but RNA approach the transcription activity
- Extraction methods (nucleic acid recovery not equal) : critical step
- Internal control (negative mNGS)

- Specimen collection: cellularity vs relative abundance of pathogens, other microorganisms, and patient cells
- Pathogen load may result in different sequence coverage depending on the total nucleic acid yield

Bioinformatics tools for mNGS data

- Large quantity of data : storage and analysis challenges
 Pieplines rapidly align the reads to NCBI nt reference database and use taxonomic classification for more accurate read assignments

A promising single universal pathogen detection method for infectious diseases diagnostics?

- Characterization of pathogens without a priori knowledge directly from clinical specimens
- Differentiation of colonization from infection
- Laboratory and data analysis workflows still complex
- Specimen preparation, rapidly evolving data analysis algorithms, incomplete reference sequence databases
- Promised diagnostic tool, especially in immunocompromised and critically ill patients

Merci de votre attention!

